On the Oscillatory Integration of Some Ordinary Differential Equations
نویسندگان
چکیده
Conditions are given for a class of nonlinear ordinary differential equations x′′ + a(t)w(x) = 0, t ≥ t0 ≥ 1, which includes the linear equation to possess solutions x(t) with prescribed oblique asymptote that have an oscillatory pseudo-wronskian x′(t)− x(t) t .
منابع مشابه
Reduction of Differential Equations by Lie Algebra of Symmetries
The paper is devoted to an application of Lie group theory to differential equations. The basic infinitesimal method for calculating symmetry group is presented, and used to determine general symmetry group of some differential equations. We include a number of important applications including integration of ordinary differential equations and finding some solutions of partial differential equa...
متن کاملOn second derivative 3-stage Hermite--Birkhoff--Obrechkoff methods for stiff ODEs: A-stable up to order 10 with variable stepsize
Variable-step (VS) second derivative $k$-step $3$-stage Hermite--Birkhoff--Obrechkoff (HBO) methods of order $p=(k+3)$, denoted by HBO$(p)$ are constructed as a combination of linear $k$-step methods of order $(p-2)$ and a second derivative two-step diagonally implicit $3$-stage Hermite--Birkhoff method of order 5 (DIHB5) for solving stiff ordinary differential equations. The main reason for co...
متن کاملNumerical inversion of Laplace transform via wavelet in ordinary differential equations
This paper presents a rational Haar wavelet operational method for solving the inverse Laplace transform problem and improves inherent errors from irrational Haar wavelet. The approach is thus straightforward, rather simple and suitable for computer programming. We define that $P$ is the operational matrix for integration of the orthogonal Haar wavelet. Simultaneously, simplify the formulaes of...
متن کاملViewing Some Ordinary Differential Equations from the Angle of Derivative Polynomials
In the paper, the authors view some ordinary differential equations and their solutions from the angle of (the generalized) derivative polynomials and simplify some known identities for the Bernoulli numbers and polynomials, the Frobenius-Euler polynomials, the Euler numbers and polynomials, in terms of the Stirling numbers of the first and second kinds.
متن کاملOn the numerical analysis of rapid oscillation
This paper surveys recent advances in the allied challenges of discretizing highly oscillatory ordinary differential equations and computing numerical quadrature of highly oscillatory integrals, and attempts to sketch the mathematical foundations of a general approach to these issues. Having described the Magnus, Cayley and Neumann methods for highly oscillatory ordinary differential equations ...
متن کامل